Indian Statistical Institute, Bangalore

B. Math. Second Year

Duration: 3 hours

Second Semester - Computer Science II

Date : Apr 26, 2017

Final Exam

Answer all the questions.

- Max Marks: 50
- 1. Define a matrix norm and explain how it differs from a vector norm . Show that the vector norm

$$\|x\|_{\infty} = \max_{i} |x_i|$$

for $x \in \mathbb{R}^n$ induces the matrix norm

$$\|\boldsymbol{A}\|_{\infty} = \max_{i} \sum_{j} |a_{ij}|.$$
[10]

2. Let A be an $n \times n$ nonsingular matrix with real entries. If $||A||_{\infty} < 1$ show that $(I - A)^{-1}$ exists and $(A + E)^{-1}$ also exists provided $||A^{-1}E||_{\infty} < 1$. Now consider the matrix B with real entries

$$\begin{bmatrix} \epsilon & 0 & 0 & a \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & \epsilon & 0 \\ b & 0 & 0 & \epsilon \end{bmatrix}$$

and establish conditions on a, b for B^{-1} to exist for $\epsilon \neq 0$.

[10]

[10]

3. State and prove the Gerschgorin circle theorem for a real $n \times n$ matrix A. If A is a strictly diagonal matrix with nonzero diagonal entries show that it is invertible. Using this theorem discuss the location of eigenvalues for the matrix

$$\begin{bmatrix} 2 & -1 & 0 \\ 1 & 4 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

4. Let $x_0, \dots, x_n \in [a, b], f : [a, b] \to \mathbb{R}$ be a smooth function, $f_i = f(x_i)$ and

$$\omega(x) = \prod_{k=0}^{n} (x - x_k).$$

(a) Write down the Lagrange interpolation polynomial $\mathcal{L}_n(f)(x)$ that satisfies

$$\mathcal{L}_n(f)(x_i) = f_i$$

for $i = 0, \dots, n$. If $\mathcal{L}_n(1)(x) \equiv 1$ show that

$$\mathcal{L}_n(f)(x) = \frac{\sum_{j=0}^n \frac{\lambda_j f_j}{(x-x_j)}}{\sum_{j=0}^n \frac{\lambda_j}{(x-x_j)}}$$

where $\lambda_j = 1/\omega'(x_j)$ and prime denotes differentiation with respect to x. [8]

(b) For $x \in (a, b)$ show that

$$f(x) - \mathcal{L}_n(f)(x) = \frac{f^{(n+1)}(c)}{(n+1)!}\omega(x)$$

where c depends on x, $f^{(n+1)}$ denotes the (n+1)th derivative of f and

[6]

(c) Derive an upper bound for $|f(x) - \mathcal{L}_n(x)|$ if the points are equally spaced

$$x_0 = a, \ h = (b-a)/n, \ x_j = a + jh, \ j = 1, \cdots, n.$$

 $[\mathbf{6}]$